

The chemistry of pyridinethiols and related ligands—VII. Preparation and spectroscopy of mixed-ligand copper(I) complexes: the crystal structure of first mixed-ligand dinuclear [iodo(pyridine-2-thione)(tri-ptolylphosphine)copper(I)]₂ complex

Tarlok S. Lobana,^{a*} Seema Paul^a and Alfonso Castineiras^b

^a Department of Chemistry, Guru Nanak Dev University, Amritsar 143,005, Punjab, India

^b Departamento de Quimica Inorganica, Universidade de Santiago, 15706-Santiago de Compostela, Galicia, Spain

(Received 20 March 1997; accepted 2 May 1997)

Abstract—Direct reaction of copper(I) iodide with pyridine-2-thione (C_5H_5NS) and tri-*p*-tolyl phosphine $(p-Tol_3P)$ in 1:1:2 ratio in refluxing chloroform formed a product of stoichiometry, $[Cul(C_5H_5NS)(p-Tol_3P)]_2$ (5), whose X-ray crystal structure has been determined. It crystallises from a dichloromethane-ethanol mixture and exists as a centrosymmetric sulfur bridged dimer with distorted tetrahedral geometry about each Cu atom ; the other two positions of each Cu atom being occupied by a P atom from *p*-Tol₃P and a iodine atom and the central core Cu₂S₂ of the dimer is planar. The interatomic important parameters are: Cu—P = 2.243(3), Cu—S, 2.393(4), 2.425(4), Cu—I, 2.603(2), C—S, 1.690(12) Å, Cu—S—Cu, S—Cu—S, and Cu—S—C bond angles are 85.25(13), 94.75(13) and 107.0(4) respectively. The dimer structure is stabilised by strong intramolecular N—H···I hydrogen bonds. The solution phase behaviour of 5 and other related mixed-ligand copper(I) complexes, $[CuX(C_5H_5NS)L]_2$ [X = Cl, L = *p*-Tol₃P (1), X = Br, L = *m*-Tol₃P (2), *p*-Tol₃P (3), X = I, L = *m*-Tol₃P (4)] is also studied using electronic absorption and multinuclear (¹H, ¹³C and ³¹P) NMR spectroscopy. (© 1997 Elsevier Science Ltd

Keywords: tri-*p*-tolylphosphine; pyridine-2-thione; sulphur-bridged dimer; copper(I) complex; multinuclear NMR solution phase studies.

The coordination chemistry of copper is interesting due to its presence in copper proteins and thus a pursuit for modelling its coordination sites [1]. Heterocyclic thiones are one class of biochemically significant compounds used for studying their binding properties with soft Lewis acid like Cu^{I} and this interaction is highly flexible, thus forming a variety of stereochemistries [1–5].

Neutral pyridine-2-thione (hereafter C_5H_5NS) and its substituted analogues with Cu^I form several complexes, notably: $[Cu(\eta^1-S-C_5H_5NS)_3](NO_3)$ [6] and $[Cu(\eta^1-S-C_5H_5NS)_4](CIO_4)$ [7]. $[Cu_2(\eta^1-S-C_5H_5NS)_2$ $(\eta^2 - \mu - S - C_5 H_5 NS)_2 I_2$] [8,9], [Cu₂($\eta^1 - S - C_5 H_5 NS)_2 I_2$] (X = Cl, Br) [9–11], [Cu₂L₄L'₂] (PF₆)₂ and [Cu₂L₆](PF₆)₂ [L = 4-Me-C₅H₄NS, 4-Et-C₅H₄NS, L' = C₂H₅OH, C₅H₅NS) [12]]. Similarly, deprotonated C₅H₄NS⁻ or its substituted analogues, form hexanuclear [Cu¹₆L₆] complexes [12,13] containing bridging L (N,S-cum-S-bridging, η^3 -mode). A few other deprotonated, but structurally uncharacterised Cu¹ complexes, (CuL)_n [L = C₅H₄NS⁻ or {C₅H₃NS-3-SiMe₃]⁻] [11,14] as well as Cu¹¹ complexes, [CuL₂] {L⁻ = η^2 -N,S-C₅HNS-3-CN-4-R¹-6-R²; R¹, R²: *p*-CH₃OC₆H₄, Ph (or CH₃); Ph. Ph (or CH₃); *p*-ClC₆H₄, Ph (or CH₃)] [15], analogous to 1-oxopyridine-2-thione complexes [16,17] have also been reported.

^{*} Author to whom all correspondence should be addressed.

The mixed-ligand complexes of Cu^I investigated with tertiary phosphines and neutral pyridine-2thione are: (i) monomeric $[CuX(HL)L'_n]$ {HL = η^1 -S-C₅H₅NS, X = Cl, Br, n = 2 for $L' = PPh_3$, and 1 for $Ph_2P-(CH_2)_m-PPh_2, m = 1-4$ [18-21],[Cu(P- $Ph_{3}_{2}(HL)_{2}$ (NO₃) [22] { $HL = \eta^{1}-S-C_{5}H_{5}NS$ } and (ii) dimeric $[Cu(HL)XL']_2$ $\{HL = \eta^2 \cdot \mu \cdot S \cdot C_5 H_5 NS,$ $X = Cl, Br, I; L' = PPh_3, p-Tol_3P; X = Br, L = m-$ Tol₃P-Tol is a tolyl group} [18,23,24] as well as a deprotonated substituted pyridine-2-thione complex, viz. $[Cu_2(\eta^1-S-C_5H_3NS-3-SiMe_3)_2L_3]$ containing chelating and bridging L {L = Ph_2P -(CH₂)₂-PPh₂} [25].

The crystal structures of the dimeric complexes, $[CuBr(C_3H_5NS)L]_2$ (L = PPh₃, m-Tol₃P) have shown thione bridging in complexes and formation of a planar Cu₂S₂ central core in which weak Cu···Cu or S···S interactions are indicated [18,24]. The role of iodo- anion on such interactions as well as on bonding properties of pyridine-2-thione in analogous mixedligand complexes is not explored. This paper describes the crystal and molecular structure of first iodocopper(I) mixed ligand complex with a substituted phosphine and compare the structure with other dimeric complexes as well as study the solution phase behaviour of this and related mixed-ligand copper(I) complexes.

EXPERIMENTAL

General materials

2-Hydroxypyridine was procured from M/s Sisco Laboratories, Bombay, while *meta-* and *para-*tolyl phosphines (*m*-Tol₃P, *p*-Tol₃P) were procured from Pressure Chemicals Co. Ltd. Pittsburg, U.S.A. Copper(II) chloride dihydrate was procured from M/s Sarabhai Chemicals and its bromide prepared by treating with conc. HBr acid. Copper(I) iodide was prepared from aqueous solution of copper(II) sulphatepentahydrate by reducing it with SO₂ gas in the presence of excess sodium iodide. Pyridine-2-thione (C₅H₅NS) was prepared by a literature method [21] by treating 2-hydroxypyridine with solid P₂S₅. Other starting materials, CuCl(C₅H₅NS) and CuBr₂ (C₅H₅NS)₂ were prepared by the reported methods [21].

Preparation of complexes

The complexes were prepared by one of the following methods.

Method 1. $[Cul(C_5H_5NS)(p-Tol_3P)]_2$ (5). To Cul (0.100 g, 0.52 mmol) suspended in CHCl₃ (20 cm³) was added solid C₅H₅NS (0.058 g, 0.52 mmol) and excess of *p*-Tol₃P (0.318 g, 1.04 mmol) followed by refluxing for 2 h when a clear yellow solution was formed. It was concentrated to 1/3 of its initial volume and addition of 10 cm³ of petroleum-ether (60–80°C) formed a bright yellow solid which was filtered, washed with diethyl ether and dried *in vacuo*. Yield, 75%, m.p., 200–205°C, analytical data (%), found, C, 50.4, H, 3.90, N, 2.46, required for $C_{26}H_{26}$ NSPICu, C, 51.5, H, 4.29, N, 2.31. UV data (λ_{max} , nm), 356vwb(CS), 287m(py), 248s(Ph). IR data (cm⁻¹), 3105w(vN—H), 1599m, 1569s, 1124s(vC=S), 1096(vP—C), 806vs(ρ C—CH₃), 744m, 724w, 710w, 515s, 484w, 208sb(vCu—S), 132sb(vCu—I). NMR (³¹P, δ , ppm), δ P, -7.96sb (s-singlet, b-broad), $\Delta\delta$ P ($\delta_{complex} - \delta_{ligand}$), 1.24.

[Cul(C₅H₅NS)(m-Tol₃P)]₂ (4) was also prepared by Method 1 whose analytical data and other details are as follows: Analytical data (%), found, C, 51.1, H, 4.30, N, 2.22, required for C₂₆H₂₆NSPICu, C, 51.5, H, 4.29, N, 2.31, m.p. (°C), 128–30, yield 75%. UV data (λ_{max} , nm) 356vwb(CS), 289sh(py), 249s(Ph). IR data (cm⁻¹), 3105w(ν N—H), 1591s, 1573s, 1126s(ν C=S), 1107s(ν P—C), 780s (ρ C—CH₃), 724m, 695vs, 551s, 454s, 218sb(ν Cu—S), 124sb(ν Cu—I). NMR (³¹P, δ , ppm), δ P, -5.66sb, $\Delta\delta$ P, 0.94.

Method 2. $[CuCl(C_5H_5NS)(p-Tol_3P)]_2$ (1). To $CuCl(C_5H_5NS)$ {0.100 g, 0.48 mmol) suspended in CHCl₃ (15 cm³) was added a solution of excess p-Tol₃P (0.280 g, 0.96 mmol) in CHCl₃ (15 cm³) and contents refluxed for 2 h. The clear solution formed was filtered, concentrated when a yellow solid started forming on cooling to room temperature, which was filtered, washed with ethanol and dried in vacuo. Yield 70%, m.p. 190-192°C; analytical data (%), found, C, 60.8, H, 4.86, N, 2.34; required for C₂₆H₂₆NSPCICu, C, 60.7, H, 5.06, N, 2.72. UV data (λ_{max} , nm) 366mb(CS), 288s(py), 252s(Ph). IR data (cm⁻¹), 3165w $(\nu N-H),$ 1608m, 1597m, 1576s, $1127vs(vC=S), 1098s(vP-C), 808s(\rho C-CH_3), 747s,$ 484m. 725m. 517s. 511s. 327sb(vCu--Cl), 230sb(vCu—S). NMR (³¹P, δ , ppm), δ P, -7.64sb, $\Delta \delta P$, 1.56.

Other complexes prepared by Method 2

 $[CuBr(C_5H_5NS)(m-Tol_3P)]_2$ (2). Yield, 70%, m.p. 122-125°C; analytical data (%), found, C, 54.5, H, 4.52, N, 2.45; required for C₂₆H₂₆NSPBrCu, C, 55.9, H, 4.65, N, 2.51. UV data (λ_{max} , nm), 370mb(CS), 289.5s(py), 250.5s(Ph). IR data $(cm^{-1}),$ 1605m, 3162w(vN-H), 1573vs, 1124s(vC=S),1103m (vP---C), 782s(pC---CH₃), 753s, 723m, 693s, 547m, 486m, 310s(vCu-Br), 224sb(vCu-S). NMR $({}^{31}P, \delta, ppm), \delta P, -5.24sb, \Delta \delta P, 1.36.$

[CuBr(C₅H₅NS)(p-Tol₃P)]₂ (3). Yield, 70%, m.p. 208–210°C; analytical data (%), found, C, 55.3, H, 4.22, N, 2.50; required for C₂₆H₂₆NSPBrCu, C, 55.9, H, 4.65, N, 2.50. UV data (λ_{max} , nm), 367mb(CS), 288s(py), 251s(Ph). IR data (cm⁻¹), 3162w(vN—H), 1603m, 1573s, 1127s(vC=S), 1098s(vP—C), 809s(ρ C—CH₃), 746m, 722w, 710w, 514s, 485w, 315s(vCu—Br), 219sb(vCu—S). NMR (³¹P, δ , ppm), δ P, -6.85sb, $\Delta\delta$ P, 2.35.

Physical measurements

The elemental analysis for C, H and N were obtained with a Carlo–Erba 1108 microanalyser. The melting points were determined with a Gallenkamp electrically heated apparatus. The infrared spectra were recorded in KBr pellets ($4000-400 \text{ cm}^{-1}$) or nujol mull in polyethene sheets ($500-100 \text{ cm}^{-1}$) on a Bruker IFS 66V spectrometer. The NMR spectra were recorded in CDCl₃ using (i) Bruker AMX 300 spectrometer at 300.14, and 75.48 MHz probe frequencies (¹H and ¹³C, respectively) with TMS as the internal reference and (ii) Bruker AMX 500 spectrometer at 202.45 MHz probe frequency {³¹P(¹H)} with 85% H₃PO₄ as the external reference (δP , 27.5 ppm). The electronic absorption spectra were recorded on a Shimadzu Graphicord 240 UV–vis spectrophotometer.

X-ray data collection and reduction

A yellow prismatic crystal of $[CuI(C_3H_3NS)(p-Tol_3P)]_2$ was mounted on a glass fiber and used for data collection. Cell constants and an orientation matrix for data collection were obtained by least squares refinement of the diffraction data from 25 reflections in the range of $8.73 < \Theta < 12.31^{\circ}$ in an Enraf-Nonius MACH3 automatic diffractometer [26]. Data were collected at 293 K using MoK_{\u03ex} radiation $(\lambda = 0.71073 \text{ Å})$ and the ω scan technique and corrected for Lorentz and polarization effects [27]. An empirical absorption correction was made [28]. A summary of the crystal data, experimental details and refinement results are listed in Table 1.

Structure solution and refinement

The structure was solved by direct methods [29] which revealed the position of all non-hydrogen atoms, and refined on F^2 by a full-matrix least-squares procedure using anisotropic displacement parameters for all non-hydrogen atoms [30]. The hydrogen atoms were located in their calculated positions (C--H = 0.93-0.96 Å) and were refined using a riding model. After all shift/e.s.d. ratios were less than 0.001, the refinement converged to the agreement factors listed in Table 1. Atomic scattering factors taken from *International Tables for X-ray Crystallography* [31], while molecular graphics from *ZORTEP* [32].

RESULTS AND DISCUSSION

Solid state studies

Direct reaction of CuI with C_5H_5NS and m-Tol₃P or p-Tol₃P in 1:1:1 (or 1:1:2) mole ratio (Method 1) formed the products of same stoichiometry, viz. CuI(C_5H_5NS)L {L = m-Tol₃P (4) or p-Tol₃P (5)}. Complexes 1–3 were prepared by the reaction of

4025

CuCl(C₅H₅NS) or CuBr₂(C₅H₅NS)₂ with excess tertiary phosphines (1:2 mole ratio, Method 2), but the stoichiometry was the same as for 4 and 5 above, unlike CuX(C₅H₅NS)(PPh₃)₂ (X = Cl, Br) or bisphosphine analogues reported by the same Method 2 earlier [20,21]. Method 1 gave more random stoichiometries for 1–3, unlike for 4 and 5, and thus Method 2 was used. All the complexes are stable to air and moisture and are soluble in solvents like CHCl₃, CH₂Cl₂ etc., but have low solubility in alcohols. It may be worthy of mention here that no complex with tri-o-tolyl phosphine could be prepared by either of the methods and appears to be due to steric effect of methyl group in the ortho position.

The IR spectra of the complexes show peaks due to C5H5NS and substituted tertiary phosphines at altered positions and some characteristic peaks are listed in experimental section. The presence of vN-H peak in the region 3105-3165 cm⁻¹ as a weak to medium peak in the complexes show that C₅H₅NS is not deprotonated in the complexes and strong vC=S peak at 1139 cm^{-1} in free thione ligand shifts to low-energy in the region, 1124–1127 cm⁻¹ again as a strong peak in the complexes. This shows that C5H5NS coordinates to Cu^I center via its thione sulfur and magnitude of coordination shift is somewhat lower than that observed in the analogous Cu¹-pyridine-2-thione complexes with PPh₃ and bisphosphines [21]. The presence of CH₃ substituent in the phenyl ring increases their Lewis basicity, but lowers their π accepting property and higher basicity appears to decrease the coordination shift of vC=S.

Description of crystal structure of dinuclear $[CuI(C_5H_5NS)(p-Tol_3P)]_2$

The selected bond lengths and angles are given in Table 2, while the molecular structure with numbering scheme and packing arrangement of the complex in the unit cell are depicted in Figs 1 and 2, respectively. The basic structural unit is a centrosymmetric dimer, $[CuI(C_5H_5NS)(p-Tol_3P)]_2$, and the S atoms of the pyridine-2-thione molecules bridge two Cu atoms forming a strictly planar Cu₂S₂ core. Each Cu atom is further bonded to a P atom of p-Tol₃P and one iodine atom and thus Cu acquires a distorted tetrahedral geometry. Two tetrahedra share S-S edge and the trans iodine atoms stabilise the complex with two strong intramolecular hydrogen bonds $[N \cdots I =$ 3.616(11), $H \cdots I = 2.795(11)$ Å (sum of the van der Waals radii, 3.15 Å) [8b] and N-H-I bond angle = $160.14(19)^{\circ}$], similar to those observed in literature [8]. The pyridyl ring of the thione ligand is planar and makes an angle of 66.29° with the plane of the Cu_2S_2 core (Table 3). The Cu-I bond distance, 2.603 Å is shorter (sum of ionic radii, 2.97 Å) [8b] than that (2.674 Å) in $[Cu_2(\eta^1-S-C_5H_5NS)_2(\eta^2-\mu-S-\eta^2)]$ $C_5H_5NS_{2}I_{2}$ [8,9]. The two short and two longer Cu-S bonds, 2.393 and 2.425 Å form a parallelogram

Empirical formula	$C_{52}H_{52}Cu_2I_2N_2P_2S_2$
Formula weight	1211.90
Crystal system/Space group	Triclinic/P-1
Unit cell dimensions	$a = 9.796(8)$ Å $\alpha = 83.81(5)^{\circ}$
	$b = 10.351(9) \text{ Å} \beta = 73.62(6)^{\circ}$
	$c = 14.754(9) \text{ Å} \gamma = 63.12(6)^{\circ}$
Volume	1280(2) Å ³
Z	1
Density (calculated)	1.572 Mg/m ³
Absorption coefficient	2.217 mm^{-1}
F(000)	604
Crystal description	yellow prism
Crystal size	$0.35 \times 0.10 \times 0.05 \text{ mm}$
θ range for data collection	2.53 to 24.64°
Index ranges	$0 \le h \le 11, -10 \le k \le 12, -16 \le l \le 17$
Reflections collected	4614
Independent reflections	4336 [$R_{int} = 0.0677$]
Reflections observed	1780
Criterion for observation	$> 2\sigma(I)$
Max. and min. transmission	1.000 and 0.294
Measurement method	ω
No. of standard reflections	3
Interval time	7200
Decay	0%
Structure solution	SHELXS-86 (Sheldrick, 1990)
Structure refinement	SHELXL-93 (Sheldrick, 1993)
Molecular graphics	ZORTEP (Zsolnai, 1994)
Publication material	SHELXL-93 (Sheldrick, 1993)
Weighting scheme	$w = 1/[s^{2}(Fo^{2}) + (0.0487P)^{2} + 0.0000P]$ where $P = (Fo^{2} + 2Fc^{2})/3$
Data/parameters	4336/283
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0553, wR_2 = 0.1040$
Goodness-of-fit on F^2	0.991
Largest diff. peak and hole	0.707 and $-0.902 \text{ e} \cdot \text{\AA}^{-3}$

Table 1. Crystal data and structure refinement for [CuI(C₅H₅NS)(p-Tol₃P)]₂

of the Cu_2S_2 core, similar to other dimeric Cu^1 complexes listed in Table 4 and bond lengths are similar in values. The asymmetry in Cu—S distances is close to that of complex 7, while 6 and 8 exhibit largest asymmetry.

The Cu—P bond distance of 2.243 Å is only slightly shorter than in 6, but longer than in 7 or 8. These Cu—P distances are slightly shorter than those in monomeric tetrahedral complexes [20,24]. The C—S bond distance of 1.690 Å in 5 is shortest among all the dimeric complexes listed in Table 4 [6, 1.721, 7, 1.716, 8, 1.703 Å] and close to the value, 1.692 Å, shown by monomeric tetrahedral complex, CuCl(C₅H₅NS)(PPh₃)₂ [20]. The Cu—S—C angle (107.0°) is similar to those shown by 7 (108.1°) and 8 (107.1°), but shorter than that in 6 (111.4°) or monomeric tetrahedral complexes [20,24].

It will be interesting to compare the Cu···Cu and S···S separations as well as Cu—S—Cu and S—Cu—S bond angles of the central planar Cu₂S₂ cores of the dimers (Table 4). It can be seen that the decrease of Cu···Cu separation is accompanied by the corresponding increase of S···S separation and 5 shows the next shortest Cu···Cu separation after 6, though this separation is more close to that in 7 or 8. The Cu···Cu separation in **6** is less than the sum of van der Waals radii of Cu atoms (2.80 Å) and S···S separation is more than the sum of van der Waals radii of S atoms (3.60 Å) [8b]. It is apparent that whereas in **6**, Cu···Cu interaction is indicated, in all other cases weak S···S interaction appears possible. Further, significantly, Cu–S–Cu and S–Cu–S bond angles in the two *p*-Tol₃P complexes (**5** and **8**) are similar [as were their C–S distances of Cu–S–C bond angles as discussed earlier] despite their dissimilar heterocyclic thione ligands and agree with the predicted geometry for $Y_2MX_2MY_2$ dimers according to a theoretically proposed criteria [33].

Finally, the interbond angles around Cu atoms in 5 show distortions from the idealized tetrahedral geometry. The geometry within tri-p-tolyl phosphine and the pyridine-2-thione molecules in 5 are consistent with those commonly found in other complexes [18,23,24].

Solution phase studies

UV spectral studies. The C=S chromophore of free C_5H_5NS absorbs at λ_{max} , 370 nm as a strong peak and

Table 2. Selected bond lengths (Å) angles (°) for $[CuI(C_3H_5NS) (p-ToI_3P)]_2$ (5)

Cu-P	2.243(3)				
Cu-S"	2.393(4)				
Cu—S	2.425(4)				
Cu—I	2.603(2)				
Cu—Cu ^a	3.263(4)				
PC(21)	1.805(11)				
PC(11)	1.810(10)				
PC(31)	1.819(11)				
S-S ^a	3.545(7)				
SC(2)	1.690(12)				
PCuS ^a	106.77(13)				
PCuS	119.71(14)				
S-Cu-S ^a	94.75(13)				
PCuI	111.54(11)				
SCuI"	116.19(11)				
SCuI	107.26(11)				
C(21) - P - C(11)	103.4(5)				
C(21) - P - C(31)	102.3(5)				
C(11) - P - C(31)	102.7(5)				
C(21)PCu	118.7(4)				
C(11)PCu	116.7(3)				
C(31)PCu	110.9(4)				
$C(2)$ — S — Cu^a	116.5(5)				
C(2)Cu	107.0(4)				
Cu—S—Cu"	85.25(13)				

^a Symmetry operations used to generate equivalent atoms: -x+1, -y+2, -z+1.

it shows considerable intensity changes [21] and it appears as a very weak to medium intensity broad peak in its complexes in the region 355–370 nm (cf Experimental). The iodide complexes showed the largest shifts in the λC —S peak positions to the high energy region as anticipated in view of the enhanced Cu—S interaction due to increased softness of Cu^I bonded to polarizable iodide group and the peaks almost disappear. The second peak due to the pyridyl ring at 290 nm of free pyridine-2-thione ligand also shows significant intensity changes for 4 and 5 and less for 1–3. The peaks due to *m*-Tol₃P and *p*-Tol₃P (π - π *) located in the region 248–251 nm as strong peaks are not significantly changed in the complexes and is in agreement with the general behaviour of aryl phosphines [23,24]—the n(P) to π * (tolyl group) transition is obscured by the pyridyl group, however.

NMR spectral studies. The complexes show broad ³¹P NMR signals at low field position supporting coordination of tertiary phosphines to Cu¹ center. The coordination shifts $[\Delta \delta = \delta_{complex} - \delta_{ligand}]$ are not large as compared to those shown by other metals [34], however, these values do not support weak Cu—P interaction, as the solid state structure of complex (5) has established a normal Cu—P bond (*vide supra*); rather may be attributed to the lability of Cu—P bond and tendency to dissociate L, for example, according to eq. (1):

$$Cu_2X_2(C_5H_5NS)_2L_2 \leftrightarrow Cu_2X_2(C_5H_5NS)_2L + L$$

(X = Cl, Br, I; L = m-Tol_3P, p-Tol_3P) (1)

Thus the broadness of all ³¹P signals shows that free and coordinated L are fast exchanging on NMR time scale giving rise to the exchange-averaged broad signals.

Table 5 lists the ¹H and ¹³C NMR data of the com-

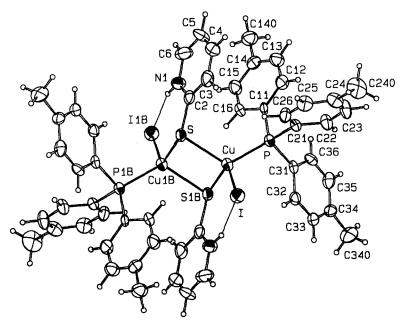


Fig. 1. Perspective view of $[CuI(C_5H_5NS)(p-Tol_3P)]_2$ (5) molecule with the numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. The hydrogen atoms are drawn with an arbitrary radius of 0.1 Å and are represented by open circles.

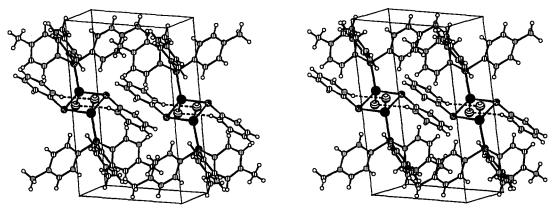


Fig. 2. Molecular packing in the crystal. Hydrogen bonds are denoted by dashed lines.

Plane	Rms ^a	Atoms defining a plane	Angles between planes
Ι	0.004	N ¹ , C ² , C ³ , C ⁴ , C ⁵ , C ⁶ , S	_
II	0.000	Cu, S, Cu*, S*	66.29° (I & II)
Ш	0.020	C^{11} , C^{12} , C^{13} , C^{14} , C^{15} , C^{16} , P, C^{140}	75.39° (II & III)
IV	0.012	C ²¹ , C ²² , C ²³ , C ²⁴ , C ²⁵ , C ²⁶ , P, C ²⁴⁰	71.63° (III & IV)
v	0.002	C^{31} , C^{32} , C^{33} , C^{34} , C^{35} , C^{36} , P, C^{340}	81.85° (IV & V)

Table 3. The angles between various planes of complex 5

^a Rms deviations of fitted atoms.

Table 4. Selected bond lengths (Å) and bond angles (°) in related Cu^I complexes

Complex	Cu—P	Cu—S	Cu···Cu	S···S	Cu—S—Cu	S—Cu—S
(5)	2.243	2.393 2.425	3.263	3.545	85.3	94.8
(6)	2.253	2.335 2.488	2.691	4.005	67.7	112.3
(7)	2.229	2.383 2.392	3.420	3.332	91.5	88.5
(8)	2.227	2.356 2.470	3.316	3.508	86.7	93.2

(6) $[CuBr(C_5H_5NS)(m-Tol_3P)]_2$ (Ref. 24).

(7) $[CuBr(C_5H_5NS)(PPh_3)]_2$, (Ref. 18).

(8) $[CuCl(pymtH)(p-Tol_3P)]_2$ (Ref. 23), pymtH = pyrimidine-2-thione.

plexes and the ligands. The presence of broad NH proton signal at low field in the range δ 13.90–14.95 ppm (free ligand, δ_{NH} 13.40 ppm) shows that pyridine-2-thione is coordinating to Cu¹ centre in the neutral form in the complexes. H(6), H(5) and H(4) protons of C₅H₅NS all show low field shifts, while H(3) protons are nearly unaffected. Significant changes occur in ³J_{H-H} coupling constants; for example, for H(6) protons J₅ values decrease; J₄, J₃ disappear, while coupling from NH protons appears in 2 and 5. For H(4) protons, J₃ and J₅ become equal while J₆ mar-

ginally decreases in the complexes. Finally for H(3), J_4 and for H(5), J_4 and J_6 decrease marginally and in the latter case remain equal in the complexes as well.

The chemical shift(δ) values for the phosphine proton signals are marginally affected in the complexes (Table 5). As before, $J_{\text{H-H}}$ and $J_{\text{H-P}}$ coupling constants are more sensitive to coordination changes; for example, ${}^{3}J_{\text{H-H}}$ of *m*-H and *p*-H of *m*-Tol₃P decrease significantly in the complexes. Similarly, ${}^{3}J_{\text{H-P}}$ coupling constants involving *o*-C₁H and *o*-C₂H protons of *m*-Tol₃P as well as ${}^{3}J_{\text{H-H}}$ and ${}^{3}J_{\text{H-P}}$ coupling constants

		0-H	m-H	p-H
	CH ₃	$({}^{3}J_{\rm H-H}/{}^{3}J_{\rm H-P})$	(³ <i>J</i> _{H-H})	(³ <i>J</i> _{H-H})
<i>m-</i> Tol ₃ P	2.32s	7.18d(3H, o-C ₁ H)	7.10t	7.16d
		(3.8, ${}^{3}J_{H-P}$) 7.26d(3H, $o-C_{2}H$) (6.6, ${}^{3}J_{H-P}$)	$(3H, m-C_2H)$ (7.3)	(7.6)
<i>p</i> -Tol ₃ P	2.36s	$(7.8, {}^{3}J_{H-H}, {}^{3}J_{H-P})$	7.15d(6H) (7.3)	_
1	2.30s	7.35dd(6H) (8.2, ³ J _{H-H} , 10.0, ³ J _{H-P})	7.05d(6H) (7.7)	—
2	2.23s	7.19d(3H, o -C ₁ H) (6.4, ${}^{3}J_{H-P}$) 7.29d(3H, o -C ₂ H) (11.5, ${}^{3}J_{H-P}$)	7.14t (3H, m-C ₂ H) (4.5)	7.17d (3.8)
3	2.27s	7.30dd(6H) (8.1, ${}^{3}J_{H-H}$, 10.3, ${}^{3}J_{H-P}$)	7.07d(6H) (7.4)	
4	2.22s	7.18d(3H, o -C ₁ H) (7.2, ${}^{3}J_{H-P}$) 7.30d(3H, o -C ₂ H)	7.13t (3H, m-C ₂ H) (4.3)	7.16d (3.5)
5	2.33s	$(13.5, {}^{3}J_{H-P}) 7.39dd(6H) (8.1, {}^{3}J_{H-H}, 9.9, {}^{3}J_{H-P})$	7.12d(6H) (7.0)	
	H(6)	H(4)	H(3)	H(5)
1	7.72d (5.5, J_5)	7.42td (8.7, J ₃ , J ₅ , 1.5, J ₆)	7.46d $(8.0, J_4)$	6.82td (6.4, J_4 , J_6 , 1.6, J_3)
2	7.72t (5.9, J_5 , J_{N-H})	7.44td (8.6, J_3 , J_5 , 1.6, J_6)	7.48d $(7.6, J_4)$	6.86td 6.3, J_4 , J_6 , 1.4 J_3)
3	7.71d (4.1, J ₅)	7.43td $(8.9, J_3, J_5, 1.6, J_6)$	7.46d $(7.3, J_4)$	6.84td (6.2, J_4 , J_6 , 2.0 J_3)
4	7.67d (6.2, J_5)	7.44td (8.8, J_3 , J_5 , 1.5, J_6)	7.47d (7.7, J_4)	$\begin{array}{c} 6.87td \\ 6.2, J_4, J_6, 2.0, J_3 \end{array}$
5	7.67t (4.8, J_5 , J_{N-H})	$\begin{array}{c} (3.6, 0.3, 0.3, 1.6, 0.6)\\ 7.46td\\ (8.9, J_3, J_5, 1.6, J_6)\end{array}$	(1.1, 0.4) 7.50d $(8.3, J_4)$	$6.90td$ $(6.2, J_4, J_6, 2.0, J_3)$
C5H5NS	$\begin{array}{c} (1.0, J_{3}, J_{N-H}) \\ 7.56ddd \\ (6.3, J_{5}, 1.6, J_{4}, 0.8, J_{3}) \end{array}$	$(3.7, J_3, 7.0, J_5, 1.8, J_6)$ (8.7, J_3 , 7.0, J_5 , 1.8, J_6)	7.49dt (8.7, J_4 , 0.8, J_5 , J_6)	$\begin{array}{c} (6.2, J_4, J_6, 2.0, J_3) \\ 6.73td \\ (6.7, J_4, J_6, 1.2, J_3) \end{array}$

^a See figure below for numbering scheme.

^b n.o.-not observed.

^cd-doublet, t-triplet, dd-doublet of doublets, td-triplet of doublets, dt-doublet of triplets.

 $^{d}\delta_{NH}$ for 1–5 and ligand are 14.95, 14.44, 14.43, 13.93, 13.90 and 13.40 ppm, respectively.

of o-H protons of p-Tol₃P are all increased in the complexes (see Table 5 for numbering scheme for m-Tol₃P).

The C(2) carbon signal of free C_5H_5NS shows upfield shift in its complexes; C(6) signals are marginally downfield, but C(4) signals are nearly unaffected (Table 6). Further, while the C(3) signal shows downfield shift, more divergent trends are visible in C(5) signals, notably up-field and different magnitude of chemical shifts for *m*-Tol₃P and *p*-Tol₃P complexes. The shift to high-field is more for *p*-Tol₃P than for *m*- Tol₃P complexes and coupled with ³¹P NMR shifts, it can be suggested that *p*-Tol₃P is somewhat a better Lewis base as compared to *m*-Tol₃P. The up-field shift of C(2) carbon signal suggests that coordination of C₅H₃NS to the Cu^I center increases the aromatic character of pyridyl ring. It is worth mentioning here that anionic C₅H₄NS⁻ shows up-field shifts, if it binds to a metal center *via* sulfur only and it is attributed to aromatisation of pyridyl ring [35]. The ¹³C NMR signals of tertiary phosphines in the complexes are more complex; however, the information obtained is

	СНЗ	<i>i</i> -C (¹J _{C−P})	<i>о</i> -С (² J _{С-Р})	<i>т</i> -С (³ J _{С-Р})	<i>p</i> -C
<i>m</i> -Tol ₃ P	20.45	135.8	129.7(<i>o</i> -C ₁)	137.0(<i>m</i> -C ₁)	128.3
3	(8.8)	(16.6)	(8.0)		
			$133.5(o-C_2)$	$127.3(m-C_2)$	
			(22.0)	(6.6)	
<i>p</i> -Tol ₃ P	20.30	133.0	132.6	128.3	137.0
		(8.8)	(19.5)	(7.2)	
1	20.38	130.9	132.8	128.3	138.
			(15.0)	(9.5)	
2	20.45	131.7	$129.9(o-C_1)$	$137.2(m-C_1)$	129.
			(13.7)	(9.9)	
			$132.5(o-C_2)$	$127.4(m-C_2)$	
			(16.4)	(9.6)	
3	20.38	131.0	132.8	128.4	138.
			(15.1)	(9.9)	
4	20.43	131.5	$130.0(o-C_1)$	$137.2(m-C_1)$	129.1
			(13.3)	(10.1)	
			$133.6(o-C_2)$	$127.4(m-C_2)$	
			(16.2)	(9.5)	
5	20.37	131.3	132.9	128.3	138.1
			(14.6)	(10.0)	
	C(2)	C(6)	C(4)	C(5)	C(3)
1	172.1	137.6	136.2	128.8	114.4
2	171.6	137.7	136.0	131.1	114.
3	171.5	137.8	136.0	128.7	114.
4		137.7	136.0	131.3	114.
5	170.8	137.5	135.9	128.9	114.
C ₅ H ₅ NS	175.6	137.0	135.9	132.8	113.

Table 6. The ¹³C NMR data (δ ppm, J, Hz) of the copper(I) compounds

summarised as follows: (i) CH₃ group shows little or no variation in δ value, (ii) *p*-C of *m*-Tol₃P and *p*-Tol₃P show low-field shifts, (iii) *o*-C and *m*-C of both ligands remain nearly unaffected and finally (iv) i-C of both ligands show up-field shifts.

Acknowledgements—One of us (S.P.) is thankful to the Guru Nanak Dev University, Amritsar for a Research Fellowship and we are thankful to Professor J. S. Casas, University of Santiago, for instrumental facilities.

REFERENCES

- 1. Karlin, K. D. and Zubieta, J., Copper Coordination Chemistry: Biochemical and Inorganic Perspectives, Adenine Press, New York (1983) and refs therein.
- Lobana, T. S. and Bhatia, P. K., J. Sci. Ind. Res., 1989, 48, 394.
- 3. Raper, E. S., Coord. Chem. Rev., 1985, 61, 115.
- 4. Raper, E. S., Coord. Chem. Rev., 1994, 129, 91.
- 5. Raper, E. S., Coord. Chem. Rev., 1996, 153, 199.
- Kokkou, S. C., Fortier, S., Rentzeperis, P. J. and Karagiannidis, P., Acta Cryst., 1983, C39, 178.
- Kokkou, S. C., Schramm, V. and Karagiannidis, P., Acta Cryst., 1985, C41, 1040.
- 8. (a) Mentzafos, D., Terzis, A., Karagiannidis, P.

and Aslanidis, P., *Acta Cryst.*, 1989, **C45**, 54; (b) Huheey, J. E., Keiter, E. A. and Keiter, R. L., Inorganic Chemistry: Principles of Structure and Reactivity, 4th Edn, Harper Collins College Publishers, New York (1993).

- 9. Evans, I. P. and Wilkinson, G., J. Chem. Soc., Dalton Trans., 1974, 946.
- Stergioudis, G. A., Kokkou, S. C., Rentzeperis, P. J. and Karagiannidis, P., Acta Cryst., 1987, C43, 1685.
- 11. Constable, E. C. and Raithby, P. R., J. Chem. Soc., Dalton Trans., 1987, 2281.
- Constable, E. C., Elder, S. M., Palmer, C. A., Raithby, P. R. and Tocher, D. A., *Inorg. Chim. Acta*, 1996, **252**, 281.
- (a) Kitagawa, S., Munakata, M., Shimono, H., Matsuyama, S. and Masuda, H., J. Chem. Soc., Dalton Trans., 1990, 2105; (b) Block, E., Gernon, M., Kang, H. and Zubieta, J., Angew. Chem., Int. Ed. Engl., 1988, 27, 1342.
- 14. Castro, R., Garcia-Vazquez, J. A., Romero, J., Sousa, A., Castineiras, A., Hiller, W. and Straehle, J., *Inorg. Chim. Acta*, 1993, **211**, 47.
- Hassaan, A. M. A., Khalifa, M. A., Elgemeie, G. H., Mekheimer, R. A. and Abdel Latif, R. M., *Phosphorus, Sulphur and Silicon*, 1993, 81, 173.
- West, D. X., Hines, J. L., Bunting, R. K., Symons, M. C. R. and Malik, N. A., *Inorg. Chim. Acta*, 1988, **143**, 229.

- Sanmartin, J., Bermejo, M. R., Garcia-Vazquez, J. A., Romero, J. and Sousa, A., *Trans. Met. Chem.*, 1993, 18, 528.
- Karagiannidis, P., Aslanidis, P., Kessissoglou, D. P., Krebs, D. and Dartmann, M., *Inorg. Chim.* Acta, 1989, 156, 47.
- Lecomte, C., Skoulika, St., Aslanidis, P., Karagiannidis, P. and Papastefanou, St., *Polyhedron*, 1989, 8, 1103.
- Lobana, T. S., Bhatia, P. K. and Tiekink, E. R. T., J. Chem. Soc., Dalton Trans., 1989, 749.
- Lobana, T. S. and Bhatia, P. K., Indian J. Chem. Sect A, 1990, 29, 1225.
- Karagiannidis, P., Aslanidis, P., Papastefanou, S., Mentzafos, D., Hountas, A. and Terzis, A., *Inorg. Chim. Acta*, 1989, **156**, 265.
- Karagiannidis, P., Hadjikakou, S. K., Aslanidis, P. and Hountas, A., *Inorg. Chim. Acta*, 1990, 178, 27.
- Aslanidis, P., Hadjikakou, S. K., Karagiannidis, P., Kojic-Prodic, B. and Luic, M., *Polyhedron*, 1994, 13, 3119.
- Castro, R., Romero, J., Garcia-Vazquez, J. A., Sousa, A., Chang, Y. D. and Zubieta, J., *Inorg. Chim. Acta*, 1996, **345**, 119.

- Enraf-Nonius, CAD4-Express Software. Version 5.1. Enraf-Nonius, Delft, The Netherlands, 1995.
- 27. Spek, A. L., HELENA. A Program for Data Reduction of CAD-4 Data. University of Utrecht, The Netherlands, 1993.
- Walker, N. and Stuart, D., Acta Cryst., 1983, A39, 158.
- 29. Sheldrick, G. M., Acta Cryst., 1990, A46, 467.
- Sheldrick, G. M., SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany, 1993.
- International Tables for X-ray Crystallography, Vol. C, Kluwer Academic Publishers : Dordrecht, The Netherlands, 1995.
- Zsolnai, L., ZORTEP. A Program for the Presentation of Thermal Ellipsoids. University of Heidelberg, Germany, 1994.
- 33. Summerville, R. H. and Hoffmann, R., J. Am. Chem. Soc., 1976, **98**, 7240.
- Hughes, D. L., Lazarowych, N. J., Maguire, M. J., Morris, R. H. and Richards, R. L., J. Chem. Soc., Dalton Trans., 1995, 5.
- 35. Cookson, P. D. and Tiekink, E. R. T., J. Chem. Soc., Dalton Trans., 1993, 259.